Abstract

To establish an experimental model for acute ischaemic isolated right ventricular dysfunction and the subsequent haemodynamic changes. An open-chest porcine model with ischaemic dysfunction of the right ventricle induced by ligation of the three main branches supporting the right ventricular free wall. Invasive monitoring of mean arterial blood pressure (MAP), central venous pressure (CVP), left atrial pressure (LAP) and right ventricular pressure (RVP); ultrasonic measurement of cardiac output (CO) and calculation of haemodynamic parameters such as stroke volume (SV), systemic vascular resistance (SVR), pulmonary vascular resistance (PVR) and right ventricular stroke work (RVSW) using standard formulae. The ischaemic challenge to the right ventricle resulted in a significant (≥30%) reduction in RVSW associated with an increase (6-25%) in CVP and reduction (8-18%) in pulmonary artery pressure (PAP) despite unchanged PVR, all reflecting the failing right ventricle. There was also a significant drop in CO (14-22%) despite unchanged LAP indicating lessened transpulmonary delivery of left ventricular preload due to the failing right ventricle causing the haemodynamic compromise rather than left ventricular failure. Supraventricular and ventricular arrhythmias occurred in three and two out of seven pigs, respectively-all of which except one were successfully resuscitated with cardioversion and/or defibrillation. This novel open-chest porcine model of induced ischaemia of the right ventricular free wall resulted in significant haemodynamic compromise confirmed using standard haemodynamic measurements making it useful for further research on acute, ischaemic isolated right ventricular failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.