Abstract

This paper presents a generative model of eye-hand coordination. We use numerical optimization to solve for the joint behavior of an eye and two hands, deriving a predicted motion pattern from first principles, without imposing heuristics. We model the planar scene as a POMDP with 17 continuous state dimensions. Belief-space optimization is facilitated by using a nominal-belief heuristic, whereby we assume (during planning) that the maximum likelihood observation is always obtained. Since a globally-optimal solution for such a high-dimensional domain is computationally intractable, we employ local optimization in the belief domain. By solving for a locally-optimal plan through belief space, we generate a motion pattern of mutual coordination between hands and eye: the eye's saccades disambiguate the scene in a task-relevant manner, and the hands' motions anticipate the eye's saccades. Finally, the model is validated through a behavioral experiment, in which human subjects perform the same eye-hand coordination task. We show how simulation is congruent with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.