Abstract

We present a polynomial-time perfect sampler for the Q-Ising with a vertex-independent noise. The Q-Ising, one of the generalized models of the Ising, arose in the context of Bayesian image restoration in statistical mechanics. We study the distribution of Q-Ising on a two-dimensional square lattice over n vertices, that is, we deal with a discrete state space {1,?,Q} n for a positive integer Q. Employing the Q-Ising (having a parameter β) as a prior distribution, and assuming a Gaussian noise (having another parameter ?), a posterior is obtained from the Bayes' formula. Furthermore, we generalize it: the distribution of noise is not necessarily a Gaussian, but any vertex-independent noise. We first present a Gibbs sampler from our posterior, and also present a perfect sampler by defining a coupling via a monotone update function. Then, we show O(nlog?n) mixing time of the Gibbs sampler for the generalized model under a condition that β is sufficiently small (whatever the distribution of noise is). In case of a Gaussian, we obtain another more natural condition for rapid mixing that ? is sufficiently larger than β. Thereby, we show that the expected running time of our sampler is O(nlog?n).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.