Abstract

A novel disposable styrene based solid-phase microextraction (SPME) fiber was synthesized for the detection of lipid-lowering and antihypertensive drugs in real aquatic environment. Styrene and poly(ethylene glycol) diacrylate were co-polymerized on quartz fibers by thermal polymerization in capillary molds. The polymeric fiber possessed a homogeneous, dense as well as porous surface, showing excellent chemical and mechanical stability. The performance of the fiber was evaluated through the extraction of seven pharmaceuticals by coupling SPME with high performance liquid chromatography-tandem mass spectrometry under the optimized extraction conditions. The extraction efficiency of the fiber was up to 278 times of PDMS fiber and the enrichment factors ranged from 55 to 1183. The limits of detection were in the range from 1.7 ng L−1 to 11.7 ng L−1, with good reproducibility. Moreover, the fiber was used in the real water samples of the Pearl River Delta. The recoveries of the target analytes from river water and sea water samples at different spiked concentrations were in the range from 84.1% to 133.4% and from 81.5% to 105.5%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.