Abstract
We report new results for a time-indexed formulation of nonpreemptive single-machine scheduling problems. We give complete characterizations of all facet inducing inequalities with integral coefficients and right-hand side 1 or 2 for the convex hull of the set of feasible partial schedules, i.e., schedules in which not all jobs have to be started. Furthermore, we identify conditions under which these facet inducing inequalities are also facet inducing for the original polytope, which is the convex hull of the set of feasible complete schedules, i.e., schedules in which all jobs have to be started. To obtain insight in the effectiveness of these classes of facet-inducing inequalities, we develop a branch-and-cut algorithm based on them. We evaluate its performance on the strongly NP-hard single machine scheduling problem of minimizing the weighted sum of the job completion times subject to release dates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.