Abstract

This study presents the development of a simple, label-free, sensitive, and selective detection system for heparin based on the use of a complex of 20-repeat adenosine (A20) and coralyne. Coralyne emits relatively weak fluorescence in an aqueous solution. In the presence of A20, coralyne molecules complexed with A20 through A2-coralyne-A2 coordination. An increase in the fluorescence of coralyne was observed because coralyne remained separate from water in the hydrophobic environment of the folded A20. The presence of heparin and the formation of the coralyne–heparin complex caused coralyne to be removed from the A20–corlayne complex. Because heparin promoted coralyne dimerization, the fluorescence of coralyne decreased as a function of the concentration of added heparin. This detection method is effective because the electrostatic attraction between heparin and coralyne is substantially stronger than the coordination between A20 and coralyne in a 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer at pH 7.0. Under optimal conditions (5μM coralyne, 1μM poly A20, and 10mM HEPES), this probe exhibited high selectivity (>90-fold) toward heparin over hyaluronic acid and chondroitin sulfate. The probe׳s detection limit for heparin was determined to be 4nM (75ng/mL) at a signal-to-noise ratio of 3. This study validates the practicality of using the A20–corlayne complex to determine the concentration of heparin in plasma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.