Abstract

A NIR light-induced shape memory composite with light-induced plasticity was prepared by incorporating graphene oxide (GO) into cross-linked poly (vinyl butyral) (PVB). The cross-linked reaction between PVB and aromatic diisocyanate not only endowed the composites with excellent shape memory properties, but also offered the performance of solid-state plasticity due to the formation of carbamate bonds. The photo-responsive performance was introduced to the system by doping GO, a conventional photothermal reagent, resulting in excellent NIR light-induced shape memory properties and light-induced plasticity. According to the stress relaxation tests, the solid-state plasticity of composites could be regulated by the cross-linked density, GO, catalyst dosage and temperature. Moreover, the composites can be repeatedly programmed to a new permanent shape via a light-induced plasticity process, which still exhibited excellent light-induced shape memory properties even after 5 cycles of reconfiguration. The results demonstrate the promising prospect of these composites as actuator elements for applications in self-deployment devices and soft robotic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.