Abstract
Abstract This paper proposes a 6R robot closed-loop kinematic calibration method to improve absolute position accuracy with point and distance constraints though machine vision. In the calibration process, a camera attached to the mounting plate of the robot is used to capture a fixed reference sphere as a point constraint and to record robot joint angles and gauge block lengths that are used as a distance constraint. A first-order difference quotient is used to calculate the Jacobian matrix in the joint parameter identification process. The Staubli TX60 robot is successfully calibrated using the proposed method. After calibration, the average distance error of robot motion is decreased from 2.05 mm to 0.24 mm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.