Abstract

The shaking tables that are used in earthquake engineering are normally driven by hydraulic actuators, which require high maintenance and operation costs. In some studies, when it is only desirable to conduct small-scaled model tests, a pneumatic shaking table can be considered as an alternative to a hydraulic shaking table. This paper describes the design, development, calibration, and performance of a pneumatic shaking table system. It was proved that the pneumatic shaking table can offer satisfactory performances. Using the pneumatic shaking table, a liquefaction test on saturated sand was conducted. During liquefaction, both the stiffness and acceleration response of the ground greatly decreased. In comparison to the sharp increase in excess pore water pressure (EPWP) when liquefaction started, the dissipation process lasted for a much longer time period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.