Abstract

Hydromechanical behaviour of unsaturated expansive soils is complex, and current constitutive models failed to accurately reproduce it. Different from conventional modelling, this study proposes a novel physics-informed neural networks (PINN)-based model utilising long short-term memory as the baseline algorithm and incorporating a physical constraint (water retention) to modify the loss function. Firstly, a series of laboratory tests on Zaoyang expansive clay, including wetting and drying cycle tests and triaxial tests, was compiled into a dataset and subsequently fed into the PINN-based model. Subsequently, a specific equation representing the soil water retention curve (SWRC) for expansive clay was derived by accounting for the influence of the void ratio, which was integrated into the PINN-based model as a physical law. The ultimate predictions from the PINN-based model are compared with experimental data of unsaturated expansive clay with excellent agreement. This study demonstrates the capability of the proposed PINN in modelling the hydromechanical response of unsaturated soils and provides an innovative approach to establish constitutive models in the unsaturated soil mechanics field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.