Abstract

To explore the feasibility of an intraoperative navigation technology based on preoperatively acquired single photon emission computed tomography combined with computed tomography (SPECT/CT) images during sentinel node (SN) biopsy in patients with melanoma or Merkel cell carcinoma. Patients with a melanoma (n=4) or Merkel cell carcinoma (n=1) of a lower extremity scheduled for wide re-excision of the primary lesion site and SN biopsy were studied. Following a Tc-nanocolloid injection and lymphoscintigraphy, SPECT/CT images were acquired with a reference target (ReTp) fixed on the leg or the iliac spine. Intraoperatively, a sterile ReTp was placed at the same site to enable SPECT/CT-based mixed-reality navigation of a gamma ray detection probe also containing a reference target (ReTgp).The accuracy of the navigation procedure was determined in the coronal plane (x, y-axis) by measuring the discrepancy between standard gamma probe-based SN localization and mixed-reality-based navigation to the SN. To determine the depth accuracy (z-axis), the depth estimation provided by the navigation system was compared to the skin surface-to-node distance measured in the computed tomography component of the SPECT/CT images. In four of five patients, it was possible to navigate towards the preoperatively defined SN. The average navigational error was 8.0 mm in the sagittal direction and 8.5 mm in the coronal direction. Intraoperative sterile ReTp positioning and tissue movement during surgery exerted a distinct influence on the accuracy of navigation. Intraoperative navigation during melanoma or Merkel cell carcinoma surgery is feasible and can provide the surgeon with an interactive 3D roadmap towards the SN or SNs in the groin. However, further technical optimization of the modality is required before this technology can become routine practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.