Abstract

Conjugation reactions are important pathways in the peripheral metabolism of thyroid hormones. Rat cardiac fibroblasts produce and secrete glucuronidated thyroxine (T4G) and 3,3′,5-triiodothyronine (T3G). We here show that, compared to fibroblasts from other anatomical locations, the capacity of cardiofibroblasts to secrete T4G and T3G is highest. H9c2(2-1) myotubes, a model system for cardiomyocytes, take up T4G and T3G at a rate that is 10–15 times higher than that for the unconjugated thyroid hormones. T3 and T4, and their glucuronides, stimulate H9c2(2-1) myoblast-to-myotube differentiation. A substantial β-glucuronidase activity was measured in H9c2(2-1) myotubes, and this confers a deconjugating capacity to these cells, via which native thyroid hormones can be regenerated from glucuronidated precursors. This indicates that the stimulatory effects on myoblast differentiation are exerted by the native hormones. We suggest that glucuronidation represents a mechanism to uncouple local thyroid hormone action in the heart from that in other peripheral tissues and in the systemic circulation. This could represent a mechanism for the local fine-tuning of cardiac thyroid hormone action.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.