Abstract

A phenalenone based "turn on" probe was developed for selective and sensitive detection of Fe3+ ions in aqueous solutions. The thiophene-2-carboxaldehyde (receptor unit) was integrated into the 6-amino-1-phenalenone (6-AP) (signal reporter unit) through the C = N bond formation. The probe, 6-APT, operated through subsequent hydrolysis of the C = N bond induced by the coordination of Fe3+ ions to the heteroatoms to form highly fluorescent 6-AP. The probe displayed remarkable characteristics such as rapid response time (< 1min), high analyte selectivity, and low limit of detection (1.3 µM). The sensing approach offered an accurate method for the detection of Fe3+ ions in real water samples (tap water and drinking water). In addition to the fluorometric response, the presence of Fe3+ ions can be monitored under daylight by the change in the color of the solution. Importantly, this study is the first example of a phenalenone-based sensor developed for metal ion sensing in literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.