Abstract

We investigate the problem of finding the optimal shape and topology of a system of acoustic lenses in a dissipative medium. The sound propagation is governed by a general semilinear strongly damped wave equation. We introduce a phase-field formulation of this problem through diffuse interfaces between the lenses and the surrounding fluid. The resulting formulation is shown to be well-posed and we prove that the corresponding optimization problem has a minimizer. By analyzing properties of the reduced objective functional and well-posedness of the adjoint problem, we rigorously derive first-order optimality conditions for this problem. Additionally, we consider the $\Gamma$-limit of the reduced objective functional and in this way establish a relation between the diffuse interface problem and a perimeter-regularized sharp interface shape optimization problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.