Abstract

In this work, a perturbed hard-sphere equation of state has been employed to predict the pressure–volume–temperature properties of some phosphonium-, pyridinium-, and pyrrolidinium-based ionic liquids in compressed states. Two temperature-dependent parameters that appeared in the equation of state have been determined using the critical properties of abovementioned ionic liquids as the scaling constant, i.e., knowing only two available scaling constants is sufficient to utilize the proposed equation of state to this class of fluids. The predicted densities were compared with those obtained from the experiment, over a broad pressure range from 1 to 65 MPa. From 550 data points examined for the aforementioned ionic liquids, the total average absolute deviation, AAD was found to be 1.12%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.