Abstract

Development of time-optimal strategy for non-linear problem of planetary landing mission by using perturbation technique is investigated on two scenarios in this study. The first scenario includes finding an optimal control policy for descent in the variable gravitational field of the target planet analytically. In the second scenario, the optimal policy is derived by considering the effect of spacecraft mass variations in an analytic solution. To validate the accuracy of each generated policy, a numeric method such as steepest descent is employed. Afterwards, the fuzzy algorithm is followed to achieve the closed-loop guidance strategy for this non-linear system. The training process of the fuzzy system is based on the achieved perturbation solution of variable mass landing problem by utilizing a set of states-related non-dimensional variables for faster convergence rate. Finally, the lunar landing mission is demonstrated as a viable example of the non-linear planetary landing mission. Simulation results show that the presented optimal guidance laws are so effective which can be utilized in the real world spacecraft applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.