Abstract

Metallic hydrogen has been a major issue in physical chemistry since its prediction in 1935. Its predicted density implies 100 GPa (106 bar = Mbar) pressures P are needed to make metallic H with the Fermi temperature TF = 220 000 K. Temperatures T can be several 1000 K and still be "very low" with T/TF ≪ 1. In 1996, metallic fluid H was made under dynamic compression at P = 140 GPa and calculated T ≈ 3000 K generated with a two-stage light-gas gun. Those T's place metallic H in the liquid-liquid phase transition region. The purpose of this Perspective is to place the phase curve measured in laser-heated diamond anvil cells in context with those measured electrical conductivities. That phase curve is probably caused by dissociation of H2 to H starting near 90 GPa/1600 K. Metallic H then forms in a crossover as a semiconductor up to 140 GPa/3000 K. Dynamic quasi-isentropic pressure was tuned to make metallic H by design in those conductivity experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.