Abstract

Turbulent flow over a backward-facing step, perturbed periodically by alternative blowing∕suction through a thin slit (0.05H width) situated at the step edge, was studied computationally using (LES) large eddy simulation, (DES) detached eddy simulation, and (T-RANS) transient Reynolds-averaged Navier–Stokes techniques. The flow configuration considered (ReH=UcH∕ν=3700) has been investigated experimentally by Yoshioka et al. (12). The periodic blowing∕suction with zero net mass flux is governed by a sinusoidal law: ve=0.3Ucsin(2πfet), Uc being the centerline velocity in the inlet channel. Perturbation frequencies fe corresponding to the Strouhal numbers St=0.08, 0.19, and 0.30 were investigated (St=feH∕Uc). The experimental observation that the perturbation frequency St=0.19 represents the most effective case, that is the case with the minimum reattachment length, was confirmed by all computational methods. However, the closest agreement with experiment (the reattachment length reduction of 28.3% compared to the unperturbed case) was obtained with LES (24.5%) and DES (35%), whereas the T-RANS computations showed a weaker sensitivity to the perturbation: 5.9% when using the Spalart–Allmaras model and 12.9% using the k-ω SST model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.