Abstract

Energy harvesting from the surrounding environment has been a superior way of eliminating the burden of having to replace depleted batteries in wireless sensor networks (WSNs), thereby achieving a perpetual lifetime. However, the ambient energy is highly time-variable and depends on the environmental conditions, which raises the need to design new approaches for predicting future energy availability. This paper presents a performance evaluation and comparison of three recently-proposed solar energy prediction algorithms for WSNs. In order to provide an accurate performance of the algorithms, real-world measurements obtained from a solar panel were considered. Also, the performance characteristics of the algorithms in four seasons –winter, spring, summer and autumn – were demonstrated. To do this, a month in each season was selected for performance comparison, discussing the performance of the algorithms in each season.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.