Abstract

AbstractFuture changes in climate variable exhibit prominent impact on flood magnitudes, crop yields, and freshwater withdrawal. Researchers typically ignore the large degree of uncertainty translated from climate projections to the estimated climate change magnitudes while applying pre‐processing approaches on climate change projections. General Circulation Models (GCM) exhibit substantial uncertainty in projecting future changes in the seasonal temperature, which is evaluated by estimating the shift in either the mean or variance. Bias between the observed changes (1950–1999) and GCM simulated changes vary across models, climate regions, seasons, and under emission scenarios. The simplest approach to reduce model structural uncertainty, equal weighting of GCMs, does not consider superiority of one or multiple GCMs compared to the rest. The current study adopts a performance‐based model combination approach that has shown efficiency in streamflow and weather forecasting, and GCM precipitation simulation. The optimal model combination approach has been modified to combine multi‐model climate change information, while yielding the spatial correlation in climate change information within a geographic region. The optimal model combination approach, along with a simple bias‐correction, is applied on 10 GCMs over nine climate regions across the coterminous United States (CONUS). We found that the optimal combination exhibits lower RMSE values as compared to the equal combination. Correlations between the model combined projections under optimal combination and the observed changes are strong and positive (>0.5). Future (2000–49) model combined projections exhibit an increase in the mean seasonal temperature by 2°C for winter and by 1°C for summer over almost all climate regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.