Abstract
Stereoscopic imaging is becoming very popular and its deployment by means of photography, television, cinema. . .is rapidly increasing. Obviously, the access to this type of images imposes the use of compression and transmission that may generate artifacts of different natures. Consequently, it is important to have appropriate tools to measure the quality of stereoscopic content. Several studies tried to extend well-known metrics, such as the PSNR or SSIM, to 3D. However, the results are not as good as for 2D images and it becomes important to have metrics dealing with 3D perception. In this work, we propose a full reference metric for quality assessment of stereoscopic images based on the binocular fusion process characterizing the 3D human perception. The main idea consists of the development of a model allowing to reproduce the binocular signal generated by simple and complex cells, and to estimate the associated binocular energy. The difference of binocular energy has shown a high correlation with the human judgement for different impairments and is used to build the Binocular Energy Quality Metric (BEQM). Extensive experiments demonstrated the performance of the BEQM with regards to literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.