Abstract

In this paper, we study space–time generalized additive models. We apply the penalyzed likelihood method to fit generalized additive models (GAMs) for nonseparable spatio-temporal correlated data in order to improve the estimation of the response and smooth terms of GAMs. The results show that our space–time generalized additive models estimated response and smooth terms reasonable well, and in addition, the mean squared error, mean absolute deviation and coverage intervals improved considerably compared to the classic GAM. An application on particulate matter concentration in the North-Italian region of Piemonte is also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.