Abstract

Context. Results from the theory of radiatively driven winds are incorporated in stellar evolutionary and population synthesis models, and used in our interpretation of the observations of the deep Universe. Yet, the theory has been confirmed only until Small Magellanic Cloud metallicities. Analyses of O-stars at lower metallicities are needed to prove the theory. Aims. We have observed GHV-62024, an O6.5 IIIf star in the low-metallicity galaxy IC1613. According to a previous preliminary analysis this star could challenge the radiatively driven wind theory at low metallicities. Methods. Our observations were obtained with VIMOS at VLT, at R~2000 and were analysed using the latest version of the model atmosphere code FASTWIND, which includes N III Results. We obtain the stellar parameters and conclude that the star follows the average wind momentum-luminosity relationship (WLR) expected for its metallicity, but with a high value for the exponent of the wind velocity law, beta. We suggest that this high value may be reached because GHV-62024 could be a fast rotator seen at a low inclination angle. While the derived beta value does not change by adopting a lower wind terminal velocity, a wrong $V_\infty$ has a clear impact on the position of the star in the WLR diagram. The N and He abundances are very high, consistent with strong CNO mixing that could have been caused by the fast rotation, although we cannot discard a different origin. We find again the well-known mass-discrepancy. Conclusions. We conclude that the star follows the WLR expected for its metallicity. The results are consistent with GHV-62024 being a fast rotator seen close to pole-on, contaminated at the surface with CNO products and with a wind structure altered by the fast rotation without modifying the global WLR. We suggest that this could be a general property of fast rotators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.