Abstract
In this paper, a new formulation of the projection approach is introduced for stand-alone probability density function (PDF) methods. The method is suitable for applications in low-Mach number transient turbulent reacting flows. The method is based on a fractional step method in which first the advection–diffusion–reaction equations are modelled and solved within a particle-based PDF method to predict an intermediate velocity field. Then the mean velocity field is projected onto a space where the continuity for the mean velocity is satisfied. In this approach, a Poisson equation is solved on the Eulerian grid to obtain the mean pressure field. Then the mean pressure is interpolated at the location of each stochastic Lagrangian particle. The formulation of the Poisson equation avoids the time derivatives of the density (due to convection) as well as second-order spatial derivatives. This in turn eliminates the major sources of instability in the presence of stochastic noise that are inherent in particle-based PDF methods. The convergence of the algorithm (in the non-turbulent case) is investigated first by the method of manufactured solutions. Then the algorithm is applied to a one-dimensional turbulent premixed flame in order to assess the accuracy and convergence of the method in the case of turbulent combustion. As a part of this work, we also apply the algorithm to a more realistic flow, namely a transient turbulent reacting jet, in order to assess the performance of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.