Abstract

Abstract.We present a correlative modelling technique that uses locality records (associated with species presence) and a set of predictor variables to produce a statistically justifiable probability response surface for a target species. The probability response surface indicates the suitability of each grid cell in a map for the target species in terms of the suite of predictor variables. The technique constructs a hyperspace for the target species using principal component axes derived from a principal components analysis performed on a training dataset. The training dataset comprises the values of the predictor variables associated with the localities where the species has been recorded as present. The origin of this hyperspace is taken to characterize the centre of the niche of the organism. All the localities (grid‐cells) in the map region are then fitted into this hyperspace using the values of the predictor variables at these localities (the prediction dataset). The Euclidean distance from any locality to the origin of the hyperspace gives a measure of the ‘centrality’ of that locality in the hyperspace. These distances are used to derive probability values for each grid cell in the map region. The modelling technique was applied to bioclimatic data to predict bioclimatic suitability for three alien invasive plant species (Lantana camara L., Ricinus communis L. and Solanum mauritianum Scop.) in South Africa, Lesotho and Swaziland. The models were tested against independent test records by calculating area under the curve (AUC) values of receiver operator characteristic (ROC) curves and kappa statistics. There was good agreement between the models and the independent test records. The pre‐processing of climatic variable data to reduce the deleterious effects of multicollinearity, and the use of stopping rules to prevent overfitting of the models are important aspects of the modelling process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.