Abstract

In real-world applications, there exist a lot of multiobjective optimization problems whose Pareto-optimal solutions are sparse, that is, most variables of these solutions are 0. Generally, many sparse multiobjective optimization problems (SMOPs) contain a large number of variables, which pose grand challenges for evolutionary algorithms to find the optimal solutions efficiently. To address the curse of dimensionality, this article proposes an evolutionary algorithm for solving large-scale SMOPs, which aims to mine the sparse distribution of the Pareto-optimal solutions and, thus, considerably reduces the search space. More specifically, the proposed algorithm suggests an evolutionary pattern mining approach to detect the maximum and minimum candidate sets of the nonzero variables in the Pareto-optimal solutions, and uses them to limit the dimensions in generating offspring solutions. For further performance enhancement, a binary crossover operator and a binary mutation operator are designed to ensure the sparsity of solutions. According to the results on eight benchmark problems and four real-world problems, the proposed algorithm is superior over existing evolutionary algorithms in solving large-scale SMOPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.