Abstract

This paper proposes a patient-specific approach for short-term prediction (i.e., within few minutes) of epileptic seizures. We use noninvasive EEG data, since the aim is exploring the possibility of developing a noninvasive monitoring/control device for the prediction of seizures. Our approach is based on finding synchronization patterns in the EEG that allow to distinguish in real time preictal from interictal states. In practice, we develop easily computable functions over a graph model to capture the variations in the synchronization, and employ a classifier for identifying the preictal state. We compare two state-of-the-art classification algorithms and a simple and computationally inexpensive threshold-based classifier developed ad hoc. Results on publicly available scalp EEG database and on scalp data of the patients of the Unit of Neurology and Neurophysiology at University of Siena show that this simple and computationally viable processing is able to highlight the changes in synchronization when a seizure is approaching. The proposed approach, characterized by low computational requirements and by the use of noninvasive techniques, is a step toward the development of portable and wearable devices for real-life use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.