Abstract

The Deep Learning (DL) paradigm gained remarkable popularity in recent years. DL models are used to tackle increasingly complex problems, making the training process require considerable computational power. The parallel computing capabilities offered by modern GPUs partially fulfill this need, but the high costs related to GPU as a Service solutions in the cloud call for efficient capacity planning and job scheduling algorithms to reduce operational costs via resource sharing. In this work, we jointly address the online capacity planning and job scheduling problems from the perspective of cloud end-users. We present a Mixed Integer Linear Programming (MILP) formulation, and a path relinking-based method aiming at optimizing operational costs by (i) rightsizing Virtual Machine (VM) capacity at each node, (ii) partitioning the set of GPUs among multiple concurrent jobs on the same VM, and (iii) determining a due-date-aware job schedule. An extensive experimental campaign attests the effectiveness of the proposed approach in practical scenarios: costs savings up to 97% are attained compared with first-principle methods based on, e.g., Earliest Deadline First, cost reductions up to 20% are obtained with respect to a previously proposed Hierarchical Method and up to 95% against a dynamic programming-based method from the literature. Scalability analyses show that systems with up to 100 nodes and 450 concurrent jobs can be managed in less than 7 seconds. The validation in a prototype cloud environment shows a deviation below 5% between real and predicted costs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.