Abstract

This paper addresses itself to the algorithm for minimizing the product of two nonnegative convex functions over a convex set. It is shown that the global minimum of this nonconvex problem can be obtained by solving a sequence of convex programming problems. The basic idea of this algorithm is to embed the original problem into a problem in a higher dimensional space and to apply a branch-and-bound algorithm using an underestimating function. Computational results indicate that our algorithm is efficient when the objective function is the product of a linear and a quadratic functions and the constraints are linear. An extension of our algorithm for minimizing the sum of a convex function and a product of two convex functions is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.