Abstract
In the present work the effects of important parameters such as core thickness, radius of curvature and sector angle on the static and dynamic response of composite cylindrical sandwich panels have been investigated using a higher-order sandwich panel theory (HSAPT). The presented higher-order theory, which applies first-order shear deformation shell theory (FSDT) for the face sheets and the equivalent elasticity theory for the core, is a rigorous approach that includes the higher-order effects incurred by the nonlinearity of the in-plane and transverse displacements of core. Equations of motion along with associated boundary conditions are derived by using Hamilton's principle. For simply-supported panels closed-form solutions can be achieved by Navier techniques. However, for dynamic analysis, the solution is obtained in the time domain by implementing Newmark method. Finally numerical parametric studies are performed to provide some insight into the roles of key variables that influence the static and dynamic response of sandwich panels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.