Abstract

Abstract This study documents a new parametric hurricane rainfall prediction scheme, based on the rainfall climatology and persistence model (R-CLIPER) used operationally in the Atlantic Ocean basin to forecast rainfall accumulations. Although R-CLIPER has shown skill at estimating the mean amplitude of rainfall across the storm track, one underlying limitation is that it assumes that hurricanes produce rain fields that are azimuthally symmetric. The new implementations described here take into account the effect of shear and topography on the rainfall distribution through the use of parametric representations of these processes. Shear affects the hurricane rainfall by introducing spatial asymmetries, which can be reasonably well modeled to first order using a Fourier decomposition. The effect of topography is modeled by evaluating changes in elevation of flow parcels within the storm circulation between time steps and correcting the rainfall field in proportion to those changes. Effects modeled in R-CLIPER and those from shear and topography are combined in a new model called the Parametric Hurricane Rainfall Model (PHRaM). Comparisons of rainfall accumulations predicted from the operational R-CLIPER model, PHRaM, and radar-derived observations show some improvement in the spatial distribution and amplitude of rainfall when shear is accounted for and significant improvements when both shear and topography are modeled.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.