Abstract

For segmenting cerebral blood vessels from the time-of-flight magnetic resonance angiography (TOF-MRA) images accurately, we propose a parallel segmentation algorithm based on statistical model with Markov random field (MRF). Firstly, we improve traditional non-local means filter with patch-based Fourier transformation to preprocess the TOF-MRA images. In this step, we mainly utilize the sparseness and self-similarity of the MRA brain images sequence. Secondly, we add the MRF information to the finite mixture mode (FMM) to fit the intensity distribution of medical images. We make use of the MRF in image sequence to estimate the proportion of cerebral tissues. Finally, we choose the particle swarm optimization (PSO) algorithm to parallelize the parameter estimation of FMM. A large number of experiments verify the high accuracy and robustness of our approach especially for narrow vessels. The work will offer significant assistance for physicians on the prevention and diagnosis of cerebrovascular diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.