Abstract

This paper proposes a new cardinality consensus (CC) approach called “prior-CC” to distributed probability hypothesis density (PHD) filtering based on a decentralized sensor network. In our approach, network-wide average consensus is sought with respect to the prior cardinality estimate. Unlike existing serial filtering-communication approaches, the prior-CC scheme allows the internode communication to be performed in parallel with the local filter calculation and requires only a small amount of interfacing fusion calculation and communication. This enables real time filtering that minimizes data delay and is of great significance in realistic tracking systems. We provide details of the Gaussian mixture implementation of the proposed prior-CC-PHD filter based on a diffuse target birth model and analyze the filtering-communication parallelization. In addition, we evaluate the gain of the prior-CC scheme with respect to the filtering accuracy in comparison with the standard CC scheme via simulations using a stationary linear sensor network and a dynamic nonlinear sensor network, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.