Abstract

In this paper an island model is described for the unconstrained Binary Quadratic Problem (BQP), which can be used with up to 2500 binary variables. Our island model uses a master-slave structure and the migration is centralized. In the model a basic evolutionary algorithm (EA) runs which is a hybrid, steady-state EA. The basic EA uses a new mutation operator that is composed of two parts and based on a modified version of an explicit collective memory method (EC-memory), the Virtual Loser [2].We tested our island model on the benchmark problems from the OR-Library. Comparing the results with other heuristic methods, we can conclude that our algorithm is highly effective in solving large instances of the BQP; it has a high probability of finding the best-known solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.