Abstract

In this paper, we present a framework for the modeling and simulation of a subset of physical/chemical processes occurring on different spatial and temporal scales in porous materials. In order to improve our understanding of such processes on multiple spatio-temporal scales, small-scale simulations of transport and reaction are of vital importance. Due to the geometric complexity of the pore space and the need to consider a representative elementary volume, such simulations require substantial numerical resolutions, leading to potentially huge computation times. An efficient parallelization of such numerical methods is thus vital to obtain results in acceptable wall-clock time. The goal of this paper was to improve available approaches based on lattice Boltzmann methods (LBMs) to reliably and accurately predict the combined effects of mass transport and reaction in porous media. To this end, we relied on the factorized central moment LBM as a second-order accurate approach for modeling transport. In order to include morphological changes due to the dissolution of the solid phase, the volume of fluid method with the piece-wise linear interface construction algorithm was employed. These developments are being integrated into the LBM research code VirtualFluids. After the validation of the analytic test cases, we present an application of diffusion-controlled dissolution for a pore space obtained from computer tomography (CT) scans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.