Abstract
This study investigated the performance of parallel optimization by means of a genetic algorithm (GA) for lubrication analysis. An air-bearing design was used as the illustrated example and the parallel computation was conducted in a single system image (SSI) cluster, a system of loosely network-connected desktop computers. The main advantages of using GAs as optimization tools are for multi-objective optimization, and high probability of achieving global optimum in a complex problem. To prevent a premature convergence in the early stage of evolution for multi-objective optimization, the Pareto optimality was used as an effective criterion in offspring selections. Since the execution of the genetic algorithm (GA) in search of optimum is population-based, the computations can be performed in parallel. In the cases of uneven computational loads a simple dynamic load-balancing scheme is proposed for optimizing the parallel efficiency. It is demonstrated that the huge amount of computing demand of the GA for complex multi-objective optimization problems can be effectively dealt with by parallel computing in an SSI cluster.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.