Abstract

A one-dimensional (1D) unsteady and viscous flow model that is derived from the momentum and mass conservation equations is described, and to enhance this physics-based model, a machine learning approach is used to determine the unknown modeling parameters. Specifically, an idealized larynx model is constructed and ten cases of three-dimensional (3D) fluid-structure interaction (FSI) simulations are performed. The flow data are then extracted to train the 1D flow model using a sparse identification approach for nonlinear dynamical systems. As a result of training, we obtain the analytical expressions for the entrance effect and pressure loss in the glottis, which are then incorporated in the flow model to conveniently handle different glottal shapes due to vocal fold vibration. We apply the enhanced 1D flow model in the FSI simulation of both idealized vocal fold geometries and subject-specific anatomical geometries reconstructed from the magnetic resonance imaging images of rabbits' larynges. The 1D flow model is evaluated in both of these setups and shown to have robust performance. Therefore, it provides a fast simulation tool that is superior to the previous 1D models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.