Abstract

We propose an arterial network model based on one-dimensional hemodynamic equations to study the behavior of different vascular surgical bypass grafts in the case of an arterial occlusive pathology: a stenosis of the Right Iliac artery. We investigate the performances of three different bypass grafts (Aorto-Femoral, Axillo-Femoral and cross-over Femoral) depending on the degree of obstruction of the stenosis. Numerical simulations show that all bypass grafts are efficient since we retrieve in each case the healthy hemodynamics downstream of the stenosed region while ensuring at the same time a global healthy circulation. We analyze in detail the behavior of the Axillo-Femoral bypass graft by performing hundreds of simulations where we vary the values of its Young’s modulus [0.1–50 MPa] and radius [0.01–5 cm]. Our analysis shows that Young’s modulus and radius of commercial bypass grafts are optimal in terms of hemodynamic considerations. Our numerical findings prove that this model approach can be used to optimize or plan patient-specific surgeries, to numerically assess the viability of bypass grafts and to perform parametric analysis and error propagation evaluations by running extensive simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.