Abstract

ABSTRACTA new simulation method for solving fluid-structure two-way coupling problems has been developed. All the basic equations are numerically solved on a fixed Cartesian grid using a finite difference scheme. A new definition of velocity-vorticity formulation aids us to introduce an immersed boundary method that does not require a force term to impose the no-slip condition on the solid boundaries. The proposed method is easy to implement and apply for two-way fluid-structure interaction problems. The dynamics of a falling and rising circular cylinder in a quiescent fluid as well as the motion of a circular cylinder in a lid-driven cavity are considered to evaluate the capabilities of the presented method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.