Abstract
AbstractTyphoon Megi (2010) experienced drastic eyewall structure changes when it crossed the Luzon Island and entered the South China Sea (SCS), including the contraction and breakdown of the eyewall after landfall over the Luzon Island, the formation of a new large outer eyewall accompanied by reintensification of the storm after it entered the SCS, and the appearance of a short-lived small inner eyewall. These features were reproduced reasonably well in a control simulation using the Advanced Weather Research and Forecasting (ARW-WRF) Model. In this study, the eyewall processes of the simulated Megi during and after landfall have been analyzed. Results show that the presence of the landmass of the Luzon Island increased surface friction and reduced surface enthalpy flux, causing the original eyewall to contract and break down and the storm to weaken. The formation of the new large eyewall results mainly from the axisymmetrization of outer spiral rainbands after the storm core moved across the Luzon Island and entered the SCS. The appearance of the small inner eyewall over the SCS was due to the increased surface enthalpy flux and the revival of convection in the central region of the storm core. In a sensitivity experiment with the mesoscale mountain replaced by flat surface over the Luzon Island, a new large outer eyewall formed over the western Luzon Island with its size about one-third smaller after the storm entered the SCS than that in the control experiment with the terrain over the Luzon Island unchanged.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.