Abstract

The free surface version of the GFDL model is used to study inflow and outflow through the Danish Straits, which connect the Baltic with the North Sea. Three problems are addressed: (i) the piling up of inflowing water in the Arkona basin; (ii) the transport ratios between Belt and Sound; (iii) the dominance of hydraulic or geostrophic control. Model results show that a cyclonic eddy (dome) is formed by the inflowing saline water that prevents this water from passing rapidly into the Bornholm basin. This eddy is enforced with increasing inflow due to a sea level difference between Kattegat and western Baltic. If density gradients along the straits are weak and the flow is dominantly driven by sea level differences between Kattegat and Baltic, the well-known ratio of 70%: 30% for the transports through Belt and Sound are confirmed. Strong density gradients can change this ratio considerably, especially in the outflow case, when the light water of the Baltic flows against the heavier water of the Kattegat. Under variable wind conditions, no fixed ratio is found. The flow in the Straits is geostrophically controlled; however, the strong baroclinic density field does not allow us to derive the transport simply from sea level inclination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.