Abstract

Fatigue cracks initiated from corrosion pits have been reported in various metallic structures under corrosive environments. Pit-to-crack transition occurs when the stress conditions around a corrosion pit exceed the endurance limit of the material. The effect of stress concentration at the site of a hemi-ellipsoidal corrosion pit on a metal plate was investigated using rigorous finite element analysis. Pit configuration and plate thickness were major parameters determining stress concentration factors (SCFs). Pit configuration and plate thickness were parameterized and the effects of each as a SCF were investigated. An increasing monotonic trend was evident as the pit became narrower and deeper. The effect of pit configuration was negligible, however, when the pit depth approached the plate thickness. Based on variations in the SCFs, parametric equations were developed via nonlinear regression analysis. The equations aptly represented each of the parameter characteristics and were used to accurately estimate their effect as a SCF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.