Abstract
The initial filling period during ingot casting was studied theoretically. The motivation was that it is crucial to achieve a preferred flow pattern which can lead to a smooth filling condition, particularly during the initial teeming stage. In this study, a twist-tape swirl blade was applied in a mathematical model to create a swirl flow in the inlet of the mold. The swirl blade was set vertically just beneath the inlet, which was made of a gradually divergent cross section area. The results showed that combinations of the inlet swirl flow and mold with gradually divergent bottom contributes to: i) Inlet flow passes along the wall of the mold, ii) the formation of a very uniform velocity distribution within only 6 s after the molten steel filled into the mold and iii) No formation of a hump on the free surface of the mold during the entire filling times. These phenomena will ensure that the mold flux is spread onto the surface of liquid steel evenly. Besides, the stable surface also prevents the mold flux from being dispersed into the molten steel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.