Abstract
Abstract In this study we examine some of the effects of wave-wave interactions and convective adjustment on the propagation of gravity waves in the middle atmosphere. For both a nearly monochromatic wave and a super-position of waves, nonlinear wave-wave interactions, while reducing primary wave amplitudes somewhat, are found to be unable to prevent the formation of convectively unstable layers. In contrast, convective adjustment of the wave field causes significant amplitude reductions, resulting in amplitudes for a spectrum of wave motions that achieve only a fraction of their monochromatic saturation values. Neither process is found to cause a major disruption of the primary wave field. Both wave-wave interactions and convective adjustment are found to excite harmonies of the primary wave motions. Excitation by convective adjustment appears to dominate for a monochromatic wave, whereas both processes become important for a spectrum of wave motions. In each case, the characteristics of the excited wave...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.