Abstract

During fluid injection experiments at the geothermal site of Soultz-sous-Forêts (France), more than 114,000 induced seismic events with magnitudes between −2.0 and +2.9 were detected by a local downhole monitoring network. Of these, 35,039 events are sufficiently constrained to be located. Hypocenters align along a sub-vertical, planar structure with the apparent width being dominated by data scattering indicating that seismic activity predominantly occurs along a (pre-existing) larger scale fault structure. For this scenario, we present a numerical model to simulate hydraulic overpressures and induced seismicity during hydraulic injection. The numerical model is based on the physical processes of fluid pressure and stress diffusion with triggering of the induced seismicity being controlled by Coulomb friction. Even in its simplest form of a fault zone without any structural heterogeneity, the numerical model reproduces typical observations at Soultz-sous-Forêts, such as number and magnitude of induced events, hypocenter locations (including the Kaiser effect), occurrence of post-injection seismicity, and the largest magnitude event occurring several days after shut-in.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.