Abstract

We propose a numerical method using contour integral to solve polynomial eigenvalue problems (PEPs). The method finds eigenvalues contained in a certain domain which is defined by a surrounding integral path. By evaluating the contour integral numerically along the path, the method reduces the original PEP into a small generalized eigenvalue problem, which has the identical eigenvalues in the domain. When the contour integral is approximated numerically, eigenvalues on the periphery of the path are also obtained. Error analysis shows that, even though condition numbers of those exterior eigenvalues can be huge, the interior eigenvalues are calculated less erroneously. Four numerical examples are presented, which confirm the theoretical predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.