Abstract

In this work, the distributed-order time fractional version of the Schrödinger problem is defined by replacing the first order derivative in the classical problem with this kind of fractional derivative. The Caputo fractional derivative is employed in defining the used distributed fractional derivative. The orthonormal piecewise Jacobi functions as a novel family of basis functions are defined. A new formulation for the Caputo fractional derivative of these functions is derived. A numerical method based upon these piecewise functions together with the classical Jacobi polynomials and the Gauss–Legendre quadrature rule is constructed to solve the introduced problem. This method converts the mentioned problem into an algebraic problem that can easily be solved. The accuracy of the method is examined numerically by solving some examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.