Abstract

The hybridization of carbon fibers (CFs) with carbon nanotubes (CNTs) is a new way of improving the mechanical and physical performances of composite materials. The aim of this work is to evaluate the low velocity impact response of polymer-based hybrid composite plates reinforced by the chopped CFs and CNTs using finite element method (FEM). A nested micromechanical FEM considering interphase region created by the non-bonded van der Waals interactions between the CNTs and polymer is developed for predicting the mechanical properties of hybrid composites. The predictions of the proposed numerical model are compared with the results of experiment and other numerical methods. It is demonstrated that adding a small amount of CNTs into the chopped CF-reinforced polymer composites can increase the contact force and decrease the center deflection of hybrid composite plates. The influences of volume fractions of CF and CNT, thickness and elastic modulus of interphase region, diameter and initial velocity of projectile, dimensions and boundary conditions of plate on the dynamic response of hybrid composite structures are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.