Abstract

The details of a Galerkin discretization scheme for a modified form of the electric field integral equation are outlined for smooth, three-dimensional, perfectly conducting scatterers. Limitations of the divergence conforming finite-element bases in preserving the self-stabilizing properties of the electric field integral equation operator are indicated. A numerically efficient alternative is outlined which relies on an operator-based Helmholtz decomposition. The condition number of the resulting matrix equation is demonstrated to be frequency independent for scattering from a perfectly conducting sphere at various frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.