Abstract
Conventional gas turbine blades often face corrosion and oxidation at high temperatures. For resolving these problems, another way in addition to the cooling ducts is selecting appropriate materials for the fragments manufacturing. The present work offers a solution to reduce the metallurgical issues at higher temperatures by using ultra-high temperature ceramics. Despite the rotor blades, stator ones are exposed to hot fluid without any rotation and consequence centrifugal forces. Because brittle materials such as ordinary ceramics are not applicable in the case of high tension forces, hafnium diboride is selected to examine its feasibility for the fabrication of gas turbine stator blades. Thermal stress and deformation of gas turbine stator blades are investigated numerically. Comsol Multiphysics software, utilizing Finite Element Method, was used to analyze the heat transfer and possibility of failure in the stator blades. HfB2 can be a resistant alternative for manufacturing the turbine blades, which does not fail against the applied compressive stresses according to both Von Mises and Coulomb-Mohr theories. In addition, a comparison study between HfB2 and two other diboride ceramics, ZrB2 and TiB2, is conducted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.